

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	afew 0.1pre documentation

Welcome to afew’s documentation!

afew is an initial tagging script for notmuch mail:

	http://notmuchmail.org/

	http://notmuchmail.org/initial_tagging/

Its basic task is to provide automatic tagging each time new mail is registered
with notmuch. In a classic setup, you might call it after notmuch new in an
offlineimap post sync hook or in the notmuch post-new hook.

In addition to more elementary features such as adding tags based on email
headers or maildir folders, handling killed threads and spam, it can do some
heavy magic in order to /learn/ how to initially tag your mails based on their
content.

fyi: afew plays nicely with alot, a GUI for notmuch mail ;)

	https://github.com/pazz/alot

Contents:

	Quick Start
	Install

	Initial Config

	Next Steps

	Installation
	Requirements

	Unprivileged Install

	Command Line Usage
	Initial tagging

	Move Mode

	Classify

	Commandline help

	Configuration
	Configuration File

	NotMuch Config

	Filter Configuration

	Full Sample Config

	More Filter Examples

	Filters
	SpamFilter

	ClassifyingFilter

	KillThreadsFilter

	ListMailsFilter

	SentMailsFilter

	ArchiveSentMailsFilter

	InboxFilter

	HeaderMatchingFilter

	FolderNameFilter

	Customizing filters

	Move Mode
	Configuration Section

	Rules

	Max Age

	Limitations

	Classification
	In Action

	Extending afew

	Implementation
	Database Manager

	Filter

	Mail classification

	Configuration management

	Miscellanious utility functions

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	afew 0.1pre documentation

Quick Start

The steps to get up and running are:

	install the afew package

	create the config files

	add a notmuch post-new hook that calls afew

Install

The following commands will get you going on Debian/Ubuntu systems:

$ sudo aptitude install notmuch python-notmuch dbacl
$ git clone git://github.com/teythoon/afew.git
$ cd afew
$ python setup.py install --prefix

Ensure that ~/.local/bin is in your path. One way is to add the following to
your ~/.bashrc:

if [-d ~/.local/bin]; then
 PATH=$PATH:~/.local/bin
fi

See Installation for a more detailed guide.

Initial Config

Create the directories to hold the config files:

$ mkdir -p ~/.config/afew ~/.local/share/afew/categories

Make sure that ~/.notmuch-config reads:

[new]
tags=new

Put a list of filters into ~/.config/afew/config:

This is the default filter chain
[SpamFilter]
[ClassifyingFilter]
[KillThreadsFilter]
[ListMailsFilter]
[ArchiveSentMailsFilter]
[InboxFilter]

And create a post-new hook for notmuch.

$ mkdir -p path/to/maildir/.notmuch/hooks
$ touch path/to/maildir/.notmuch/hooks/post-new

Then edit the post-new file to contain:

#!/bin/sh
$HOME/.local/bin/afew --tag --new

Next Steps

You can:

	add extra Filters for more custom filtering

	make use of the Move Mode to move your email between folders

	start using afew’s automatic Classification system

	run afew against all your old mail by running afew –tag –all

	start Extending afew afew

 Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	afew 0.1pre documentation

Installation

Requirements

afew works with python 2.7, 3.1 and 3.2

As well as notmuch and it’s python bindings, you’ll need dbacl for the text
classification. On Debian/Ubuntu systems you can install these by doing:

$ sudo aptitude install notmuch python-notmuch dbacl python-dev python-setuptools

Unprivileged Install

And I’d like to suggest to install afew as your unprivileged user.

$ python setup.py install --prefix=~/.local
$ mkdir -p ~/.config/afew ~/.local/share/afew/categories

If you do, make sure ~/.local/bin is in your path, say by putting the
following in your ~/.bashrc:

if [-d ~/.local/bin]; then
 PATH=$PATH:~/.local/bin
fi

If you want to do a system wide install you can leave off the –prefix option.

 Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	afew 0.1pre documentation

Command Line Usage

Ultimately afew is a command line tool. You have to specify an action, and
whether to act on all messages, or only on new messages. The actions you can
choose from are:

	tag

	run the tag filters. See Initial tagging.

	watch

	continuously monitor the mailbox for new files

	move-mails

	move mail files between maildir folders

	learn=LEARN

	train the category with the messages matching the
given query

	update

	update the categories [requires no query]

	update-reference

	update the reference category (takes quite some time)
[requires no query]

	classify

	classify each message matching the given query (to
test the trained categories)

Initial tagging

Basic tagging stuff requires no configuration, just run

$ afew --tag --new
or to tag *all* messages
$ afew --tag --all

To do this automatically you can add the following hook into your
~/.offlineimaprc:

postsynchook = ionice -c 3 chrt --idle 0 /bin/sh -c "notmuch new && afew --tag --new"

There is a lot more to say about general filter Configuration
and the different Filters provided by afew.

Simulation

Adding –dry-run to any –tag or –sync-tags action prevents
modification of the notmuch db. Add some -vv goodness to see some
action.

Move Mode

To invoke afew in move mode, provide the –move-mails option on the
command line. Move mode will respect –dry-run, so throw in
–verbose and watch what effects a real run would have.

In move mode, afew will check all mails (or only recent ones) in the
configured maildir folders, deciding whether they should be moved to
another folder.

The decision is based on rules defined in your config file. A rule is
bound to a source folder and specifies a target folder into which a
mail will be moved that is matched by an associated query.

This way you will be able to transfer your sorting principles roughly
to the classic folder based maildir structure understood by your
traditional mail server. Tag your mails with notmuch, call afew
–move-mails in an offlineimap presynchook and enjoy a clean inbox
in your webinterface/GUI-client at work.

For information on how to configure rules for move mode, what you can
do with it and what you can’t, please refer to Move Mode.

Classify

The –learn, –update, –update-references and –classify actions
all relate to learning how to filter your email. See the
Classification page for details.

Commandline help

The full set of options is:

$ afew --help
Usage: afew [options] [--] [query]

Options:
 -h, --help show this help message and exit

 Actions:
 Please specify exactly one action (both update actions can be
 specified simultaniously).

 -t, --tag run the tag filters
 -w, --watch continuously monitor the mailbox for new files
 -l LEARN, --learn=LEARN
 train the category with the messages matching the
 given query
 -u, --update update the categories [requires no query]
 -U, --update-reference
 update the reference category (takes quite some time)
 [requires no query]
 -c, --classify classify each message matching the given query (to
 test the trained categories)
 -m, --move-mails move mail files between maildir folders

 Query modifiers:
 Please specify either --all or --new or a query string. The default
 query for the update actions is a random selection of
 REFERENCE_SET_SIZE mails from the last REFERENCE_SET_TIMEFRAME days.

 -a, --all operate on all messages
 -n, --new operate on all new messages

 General options:
 -C NOTMUCH_CONFIG, --notmuch-config=NOTMUCH_CONFIG
 path to the notmuch configuration file [default:
 $NOTMUCH_CONFIG or ~/.notmuch-config]
 -e ENABLE_FILTERS, --enable-filters=ENABLE_FILTERS
 filter classes to use, separated by ',' [default:
 filters specified in afew's config]
 -d, --dry-run don't change the db [default: False]
 -R REFERENCE_SET_SIZE, --reference-set-size=REFERENCE_SET_SIZE
 size of the reference set [default: 1000]
 -T DAYS, --reference-set-timeframe=DAYS
 do not use mails older than DAYS days [default: 30]
 -v, --verbose be more verbose, can be given multiple times

 Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	afew 0.1pre documentation

Configuration

Configuration File

Customization of tag filters takes place in afew’s config file in
~/.config/afew/config.

NotMuch Config

afew tries to adapt to the new tag that notmuch sets on new email, but has
mostly been developed and used against the new tag. To use that,
make sure that ~/.notmuch-config contains:

[new]
tags=new

Filter Configuration

You can modify filters, and define your own versions of the base Filter that
allow you to tag messages in a similar way to the notmuch tag command, using
the config file. The default config file is:

[SpamFilter]
[ClassifyingFilter]
[KillThreadsFilter]
[ListMailsFilter]
[ArchiveSentMailsFilter]
[InboxFilter]

See the Filters page for the details of those filters and the custom
arguments they accept.

You can add filters based on the base filter as well. These can be customised
by specifying settings beneath them. The standard settings, which apply to all
filters, are:

	message

	text that will be displayed while running this filter if the verbosity is high
enough.

	query

	the query to use against the messages, specified in standard notmuch format.
Note that you don’t need to specify the new tag - afew will add that when
run with the –new flag.

	tags

	the tags to add or remove for messages that match the query. Tags to add are
preceded by a + and tags to remove are preceded by a -. Multiple tags
are separated by semicolons.

	tags_blacklist

	if the message has one of these tags, don’t add tags to it. Tags are
separated by semicolons.

So to add the deer tag to any message to or from antelope@deer.com you
could do:

[Filter.1]
query = 'antelope@deer.com'
tags = +deer
message = Wild animals ahoy

You can also (in combination with the InboxFilter) have email skip the Inbox
by removing the new tag before you get to the InboxFilter:

[Filter.2]
query = from'pointyheaded@boss.com'
tags = -new;+boss
message = Message from above

Full Sample Config

Showing some sample configs is the easiest way to understand. The
notmuch initial tagging page [http://notmuchmail.org/initial_tagging/] shows a sample config:

immediately archive all messages from "me"
notmuch tag -new -- tag:new and from:me@example.com

delete all messages from a spammer:
notmuch tag +deleted -- tag:new and from:spam@spam.com

tag all message from notmuch mailing list
notmuch tag +notmuch -- tag:new and to:notmuch@notmuchmail.org

finally, retag all "new" messages "inbox" and "unread"
notmuch tag +inbox +unread -new -- tag:new

The (roughly) equivalent set up in afew would be:

[ArchiveSentMailsFilter]

[Filter.spamcom]
message = Delete all messages from spammer
query = from:spam@spam.com
tags = +deleted;-new

[Filter.notmuch]
message = Tag all messages from the notmuch mailing list
query = to:notmuch@notmuchmail.org
tags = +notmuch

[InboxFilter]

Not that the queries do not generally include tag:new because this is implied when afew
is run with the –new flag.

The differences between them is that

	the ArchiveSentMailsFilter will add the sent tag, as well as archiving the
email. And it will not archive email that has been sent to one of your own
addresses.

	the InboxFilter does not add the unread tag. But most mail clients will
manage the unread status directly in maildir.

More Filter Examples

Here are a few more example filters from github dotfiles:

[Filter.1]
query = 'sicsa-students@sicsa.ac.uk'
tags = +sicsa
message = sicsa

[Filter.2]
query = 'from:foosoc.ed@gmail.com OR from:GT Silber OR from:lizzie.brough@eusa.ed.ac.uk'
tags = +soc;+foo
message = foosoc

[Filter.3]
query = 'folder:gmail/G+'
tags = +G+
message = gmail spam

skip inbox
[Filter.6]
query = 'to:notmuch@notmuchmail.org AND (subject:emacs OR subject:elisp OR "(defun" OR "(setq" OR PATCH)'
tags = -new
message = notmuch emacs stuff

 Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	afew 0.1pre documentation

Filters

The default filter set (if you don’t specify anything in the config) is:

[SpamFilter]
[ClassifyingFilter]
[KillThreadsFilter]
[ListMailsFilter]
[ArchiveSentMailsFilter]
[InboxFilter]

The standard filter Configuration can be applied to these filters as
well. Though note that most of the filters below set their own value for
message, query and/or tags, and some ignore some of the standard settings.

SpamFilter

The settings you can use are:

	spam_tag = <tag>

	Add <tag> to all mails recognized as spam.

	The default is ‘spam’.

	You may use it to tag your spam as ‘junk’, ‘scum’ or whatever suits your mood.
Note that only a single tag is supported here.

Email will be considered spam if the header X-Spam-Flag is present.

ClassifyingFilter

This filter will tag messages based on what it has learnt from seeing how you’ve
tagged messages in the past. See Classification for more details.

KillThreadsFilter

If the new message has been added to a thread that has already been tagged
killed then add the killed tag to this message. This allows for ignoring
all replies to a particular thread.

ListMailsFilter

This filter looks for the List-Id header, and if it finds it, adds a tag
lists and a tag named lists/<list-id>.

SentMailsFilter

The settings you can use are:

	sent_tag = <tag>

	Add <tag> to all mails sent from one of your configured mail addresses.

	The default is to add no tag, so you need to specify something.

	You may e.g. use it to tag all mails sent by you as ‘sent’. This may make
special sense in conjunction with a mail client that is able to not only search
for threads but individual mails as well.

More accurately, it looks for emails that are from one of your addresses
and not to any of your addresses.

	to_transforms = <transformation rules>

	Transform To/Cc/Bcc e-mail addresses to tags according to the
specified rules. <transformation rules> is a space separated list consisting
of 'user_part@domain_part:tags’ style pairs. The colon separates the e-mail
address to be transformed from tags it is to be transformed into. ‘:tags’
is optional and if empty, ‘user_part’ is used as tag. ‘tags’ can be
a single tag or semi-colon separated list of tags.

	It can be used for example to easily tag posts sent to mailing lists which
at this stage don’t have List-Id field.

ArchiveSentMailsFilter

It extends SentMailsFilter with the following feature:

	Emails filtered by this filter have the new tag removed, so will not have
the inbox tag added by the InboxFilter.

InboxFilter

This removes the new tag, and adds the inbox tag, to any message that isn’t
killed or spam. (The new tags are set in your notmuch config, and default to
just new.)

HeaderMatchingFilter

This filter adds tags to a message if the named header matches the regular expression
given. The tags can be set, or based on the match. The settings you can use are:

	header = <header_name>

	pattern = <regex_pattern>

	tags = <tag_list>

If you surround a tag with {} then it will be replaced with the named match.

Some examples are:

[HeaderMatchingFilter.1]
header = X-Spam-Flag
pattern = YES
tags = +spam

[HeaderMatchingFilter.2]
header = List-Id
pattern = <(?P<list_id>.*)>
tags = +lists;+{list_id}

[HeaderMatchingFilter.3]
header = X-Redmine-Project
pattern = (?P<project>.*)
tags = +redmine;+{project}

SpamFilter and ListMailsFilter are implemented using HeaderMatchingFilter, and are
only slightly more complicated than the above examples.

FolderNameFilter

This looks at which folder each email is in and uses that name as a tag for the
email. So if you have a procmail or sieve set up that puts emails in folders
for you, this might be useful.

	folder_explicit_list = <folder list>

	Tag mails with tag in <folder list> only. <folder list> is a space separated
list, not enclosed in quotes or any other way.

	Empty list means all folders (of course blacklist still applies).

	The default is empty list.

	You may use it e.g. to set tags only for specific folders like ‘Sent’.

	folder_blacklist = <folder list>

	Never tag mails with tag in <folder list>. <folder list> is a space separated
list, not enclosed in quotes or any other way.

	The default is to blacklist no folders.

	You may use it e.g. to avoid mails being tagged as ‘INBOX’ when there is the more
standard ‘inbox’ tag.

	folder_transforms = <transformation rules>

	Transform folder names according to the specified rules before tagging mails.
<transformation rules> is a space separated list consisting of
‘folder:tag’ style pairs. The colon separates the name of the folder to be
transformed from the tag it is to be transformed into.

	The default is to transform to folder names.

	You may use the rules e.g. to transform the name of your ‘Junk’ folder into your
‘spam’ tag or fix capitalization of your draft and sent folder:

folder transforms = Junk:spam Drafts:draft Sent:sent

	maildir_separator = <sep>

	Use <sep> to split your maildir hierarchy into individual tags.

	The default is to split on ‘.’

	If your maildir hierarchy is represented in the filesystem as collapsed dirs,
<sep> is used to split it again before applying tags. If your maildir looks
like this:

[...]
/path/to/maildir/devel.afew/[cur|new|tmp]/...
/path/to/maildir/devel.alot/[cur|new|tmp]/...
/path/to/maildir/devel.notmuch/[cur|new|tmp]/...
[...]

the mails in your afew folder will be tagged with ‘devel’ and ‘afew’.

If instead your hierarchy is split by a more conventional ‘/’ or any
other divider

[...]
/path/to/maildir/devel/afew/[cur|new|tmp]/...
/path/to/maildir/devel/alot/[cur|new|tmp]/...
/path/to/maildir/devel/notmuch/[cur|new|tmp]/...
[...]

you need to configure that divider to have your mails properly tagged:

maildir_separator = /

Customizing filters

To customize these filters, there are basically two different
possibilities:

Let’s say you like the SpamFilter, but it is way too polite

	Create an filter object and customize it

[SpamFilter.0] # note the index
message = meh

The index is required if you want to create a new SpamFilter in
addition to the default one. If you need just one customized
SpamFilter, you can drop the index and customize the default instance.

	Create a new type...

[ShitFilter(SpamFilter)]
message = I hatez teh spam!

and create an object or two

[ShitFilter.0]
[ShitFilter.1]
message = Me hatez it too.

You can provide your own filter implementations too. You have to register
your filters via entry points. See the afew setup.py for examples on how
to register your filters. To add your filters, you just need to install your
package in the context of the afew application.

 Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	afew 0.1pre documentation

Move Mode

Configuration Section

Here is a full sample configuration for move mode:

[MailMover]
folders = INBOX Junk
max_age = 15

rules
INBOX = 'tag:spam':Junk 'NOT tag:inbox':Archive
Junk = 'NOT tag:spam AND tag:inbox':INBOX 'NOT tag:spam':Archive

Below we explain what each bit of this means.

Rules

First you need to specify which folders should be checked for mails that are to
be moved (as a whitespace separated list):

folders = INBOX Junk

Then you have to specify rules that define move actions of the form

<src> = ['<qry>':<dst>]+

Every mail in the <src> folder that matches a <qry> will be moved into the
<dst> folder associated with that query. A message that matches
multiple queries will be copied to multiple destinations.

You can bind as many rules to a maildir folder as you deem necessary. Just add
them as elements of a (whitespace separated) list.

Please note, though, that you need to specify at least one rule for every folder
given by the folders option and at least one folder to check in order to use
the move mode.

INBOX = 'tag:spam':Junk

will bind one rule to the maildir folder INBOX that states that all mails in
said folder that carry (potentially among others) the tag spam are to be moved
into the folder Junk.

With <qry> being an arbitrary notmuch query, you have the power to construct
arbitrarily flexible rules. You can check for the absence of tags and look out
for combinations of attributes:

Junk = 'NOT tag:spam AND tag:inbox':INBOX 'NOT tag:spam':Archive

The above rules will move all mails in Junk that don’t have the spam tag
but do have an inbox tag into the directory INBOX. All other mails not
tagged with spam will be moved into Archive.

Max Age

You can limit the age of mails you want to move by setting the max_age option
in the configuration section. By providing

max_age = 15

afew will only check mails at most 15 days old.

Limitations

(1) Rules don’t manipulate tags.

INBOX = 'NOT tag:inbox':Archive
Junk = 'NOT tag:spam':INBOX

The above combination of rules might prove tricky, since you might expect
de-spammed mails to end up in INBOX. But since the Junk rule will not add
an inbox tag, the next run in move mode might very well move the matching
mails into Archive.

Then again, if you remove the spam tag and do not set an inbox tag, how
would you come to expect the mail would end up in your INBOX folder after
moving it? ;)

(2) There is no 1:1 mapping between folders and tags. And that’s a
feature. If you tag a mail with two tags and there is a rule for each
of them, both rules will apply. Your mail will be copied into two
destination folders, then removed from its original location.

 Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	afew 0.1pre documentation

Classification

In Action

Let’s train on an existing tag spam:

$ afew --learn spam -- tag:spam

Let’s build the reference category. This is important to reduce the
false positive rate. This may take a while...

$ afew --update-reference

And now let’s create a new tag from an arbitrary query result:

$ afew -vv --learn sourceforge -- sourceforge

Let’s see how good the classification is:

$ afew --classify -- tag:inbox and not tag:killed
Sergio López <slpml@sinrega.org> (2011-10-08) (bug-hurd inbox lists unread) --> no match
Patrick Totzke <reply+i-1840934-9a702d09342dca2b120126b26b008d0deea1731e@reply.github.com> (2011-10-08) (alot inbox lists) --> alot
[...]

As soon as you trained some categories, afew will automatically
tag your new mails using the classifier. If you want to disable this
feature, either use the –enable-filters option to override the default
set of filters or remove the files in your afew state dir:

$ ls ~/.local/share/afew/categories
alot juggling reference_category sourceforge spam

You need to update the category files periodically. I’d suggest to run

$ afew --update

on a weekly and

$ afew --update-reference

on a monthly basis.

 Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	afew 0.1pre documentation

Extending afew

You can put python files in ~/.config/afew/ and they will be imported by
afew. If you use that python file to define a Filter class and use the
register_filter decorator then you can refer to it in your filter
configuration.

So an example small filter you could add might be:

from afew.Filter import Filter, register_filter

PROJECT_MAPPING = {
 'fabric': 'deployment',
 'oldname': 'new-name',
}

@register_filter
class RedmineFilter(Filter):
 message = 'Create tag based on redmine project'
 query = 'NOT tag:redmine'

 def handle_message(self, message):
 project = message.get_header('X-Redmine-Project')
 if project in PROJECT_MAPPING:
 project = PROJECT_MAPPING[project]
 self.add_tags(message, 'redmine', project)

We have defined the message and query class variables that are used
by the parent class Filter. The message is printed when running with
verbose flags. The query is used to select messages to run against - here
we ensure we don’t bother looking at messages we’ve already looked at.

The handle_message() method is the key one to implement. This will be called
for each message that matches the query. The argument is a notmuch message object [http://pythonhosted.org/notmuch/#message-a-single-message]
and the key methods used by the afew filters are get_header(), get_filename()
and get_thread().

Of the methods inherited from the Filter class the key ones are add_tags() and
remove_tags(), but read about the Implementation or just read the source
code to get your own ideas.

Once you’ve defined your filter, you can add it to your config like any other filter:

[RedmineFilter]

 Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	afew 0.1pre documentation

Implementation

Database Manager

The design of the database manager was inspired by alots database
manager alot.db.DBManager.

	
class afew.Database.Database[source]

	Convenience wrapper around notmuch.

	
add_message(path, sync_maildir_flags=False, new_mail_handler=None)[source]

	Adds the given message to the notmuch index.

	Parameters:	
	path (str [http://docs.python.org/3.2/library/functions.html#str]) – path to the message

	sync_maildir_flags (bool [http://docs.python.org/3.2/library/functions.html#bool]) – if True notmuch converts the
standard maildir flags to tags

	new_mail_handler (a function that is called with a
notmuch.Message object as
its only argument) – callback for new messages

	Raises:	notmuch.NotmuchError if adding the message fails

	Returns:	a notmuch.Message object

	
close()[source]

	Closes the notmuch database if it has been opened.

	
do_query(query)[source]

	Executes a notmuch query.

	Parameters:	query (str [http://docs.python.org/3.2/library/functions.html#str]) – the query to execute

	Returns:	the query result

	Return type:	notmuch.Query

	
get_messages(query, full_thread=False)[source]

	Get all messages mathing the given query.

	Parameters:	
	query (str [http://docs.python.org/3.2/library/functions.html#str]) – the query to execute using Database.do_query()

	full_thread (bool [http://docs.python.org/3.2/library/functions.html#bool]) – return all messages from mathing threads

	Returns:	an iterator over notmuch.Message objects

	
mail_bodies_matching(*args, **kwargs)[source]

	Filters each message yielded from
Database.get_messages() through
afew.utils.extract_mail_body().

This functions accepts the same arguments as
Database.get_messages().

	Returns:	an iterator over list of str

	
remove_message(path)[source]

	Remove the given message from the notmuch index.

	Parameters:	path (str [http://docs.python.org/3.2/library/functions.html#str]) – path to the message

	
walk_replies(message)[source]

	Returns all replies to the given message.

	Parameters:	message (notmuch.Message) – the message to start from

	Returns:	an iterator over notmuch.Message objects

	
walk_thread(thread)[source]

	Returns all messages in the given thread.

	Parameters:	message (notmuch.Thread) – the tread you are interested in

	Returns:	an iterator over notmuch.Message objects

Filter

Mail classification

	
class afew.DBACL.Classifier(categories, database_directory=u'/home/docs/.local/share/afew/categories')[source]

	

	
class afew.DBACL.DBACL(database_directory=u'/home/docs/.local/share/afew/categories')[source]

	

Configuration management

Miscellanious utility functions

	
afew.utils.extract_mail_body(message)[source]

	Extract the plain text body of the message with signatures
stripped off.

	Parameters:	message (notmuch.Message) – the message to extract the body from

	Returns:	the extracted text body

	Return type:	list of str

	
afew.utils.filter_compat(*args)[source]

	Compatibility wrapper for filter builtin.

The semantic of the filter builtin has been changed in
python3.x. This is a temporary workaround to support both python
versions in one code base.

	
afew.utils.strip_signatures(lines, max_signature_size=10)[source]

	Strip signatures from a mail. Used to filter mails before
classifying mails.

	Parameters:	
	lines (list of str) – a mail split at newlines

	max_signature_size (int [http://docs.python.org/3.2/library/functions.html#int]) – consider message parts up to this size as signatures

	Returns:	the mail with signatures stripped off

	Return type:	list of str

>>> strip_signatures([
... 'Huhu',
... '--',
... 'Ikke',
...])
['Huhu']
>>> strip_signatures([
... 'Huhu',
... '--',
... 'Ikke',
... '**',
... "Sponsored by PowerDoh\'",
... "Sponsored by PowerDoh\'",
... "Sponsored by PowerDoh\'",
... "Sponsored by PowerDoh\'",
... "Sponsored by PowerDoh\'",
...], 5)
['Huhu']

 Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	afew 0.1pre documentation

 Python Module Index

 a

 			

 		
 a	

 	[image: -]
 	
 afew	

 	
 	
 afew.Database	

 	
 	
 afew.DBACL	

 	
 	
 afew.Filter	

 	
 	
 afew.NotmuchSettings	

 	
 	
 afew.Settings	

 	
 	
 afew.utils	

 Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	afew 0.1pre documentation

Index

 A
 | C
 | D
 | E
 | F
 | G
 | M
 | R
 | S
 | W

A

 	

 	add_message() (afew.Database.Database method)

 	afew.Database (module)

 	afew.DBACL (module)

 	afew.Filter (module)

 	

 	afew.NotmuchSettings (module)

 	afew.Settings (module)

 	afew.utils (module)

C

 	

 	Classifier (class in afew.DBACL)

 	

 	close() (afew.Database.Database method)

D

 	

 	Database (class in afew.Database)

 	DBACL (class in afew.DBACL)

 	

 	do_query() (afew.Database.Database method)

E

 	

 	extract_mail_body() (in module afew.utils)

F

 	

 	filter_compat() (in module afew.utils)

G

 	

 	get_messages() (afew.Database.Database method)

M

 	

 	mail_bodies_matching() (afew.Database.Database method)

R

 	

 	remove_message() (afew.Database.Database method)

S

 	

 	strip_signatures() (in module afew.utils)

W

 	

 	walk_replies() (afew.Database.Database method)

 	

 	walk_thread() (afew.Database.Database method)

 Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

 _modules/afew/Database.html

 Navigation

 		
 index

 		
 modules |

 		afew 0.1pre documentation »

 		Module code »

 Source code for afew.Database

coding=utf-8
from __future__ import print_function, absolute_import, unicode_literals

#
Copyright (c) Justus Winter <4winter@informatik.uni-hamburg.de>
#
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

import time
import logging

import notmuch

from .NotmuchSettings import notmuch_settings, get_notmuch_new_tags
from .utils import extract_mail_body

[docs]class Database(object):
 '''
 Convenience wrapper around `notmuch`.
 '''

 def __init__(self):
 self.db_path = notmuch_settings.get('database', 'path')
 self.handle = None

 def __enter__(self):
 '''
 Implements the context manager protocol.
 '''
 return self

 def __exit__(self, exc_type, exc_value, traceback):
 '''
 Implements the context manager protocol.
 '''
 self.close()

 def open(self, rw=False, retry_for=180, retry_delay=1):
 if rw:
 if self.handle and self.handle.mode == notmuch.Database.MODE.READ_WRITE:
 return self.handle

 start_time = time.time()
 while True:
 try:
 self.handle = notmuch.Database(self.db_path,
 mode = notmuch.Database.MODE.READ_WRITE)
 break
 except notmuch.NotmuchError:
 time_left = int(retry_for - (time.time() - start_time))

 if time_left <= 0:
 raise

 if time_left % 15 == 0:
 logging.debug('Opening the database failed. Will keep trying for another {} seconds'.format(time_left))

 time.sleep(retry_delay)
 else:
 if not self.handle:
 self.handle = notmuch.Database(self.db_path)

 return self.handle

[docs] def close(self):
 '''
 Closes the notmuch database if it has been opened.
 '''
 if self.handle:
 self.handle.close()
 self.handle = None

[docs] def do_query(self, query):
 '''
 Executes a notmuch query.

 :param query: the query to execute
 :type query: str
 :returns: the query result
 :rtype: :class:`notmuch.Query`
 '''
 logging.debug('Executing query %r' % query)
 return notmuch.Query(self.open(), query)

[docs] def get_messages(self, query, full_thread = False):
 '''
 Get all messages mathing the given query.

 :param query: the query to execute using :func:`Database.do_query`
 :type query: str
 :param full_thread: return all messages from mathing threads
 :type full_thread: bool
 :returns: an iterator over :class:`notmuch.Message` objects
 '''
 if not full_thread:
 for message in self.do_query(query).search_messages():
 yield message
 else:
 for thread in self.do_query(query).search_threads():
 for message in self.walk_thread(thread):
 yield message

[docs] def mail_bodies_matching(self, *args, **kwargs):
 '''
 Filters each message yielded from
 :func:`Database.get_messages` through
 :func:`afew.utils.extract_mail_body`.

 This functions accepts the same arguments as
 :func:`Database.get_messages`.

 :returns: an iterator over :class:`list` of :class:`str`
 '''
 query = self.get_messages(*args, **kwargs)
 for message in query:
 yield extract_mail_body(message)

[docs] def walk_replies(self, message):
 '''
 Returns all replies to the given message.

 :param message: the message to start from
 :type message: :class:`notmuch.Message`
 :returns: an iterator over :class:`notmuch.Message` objects
 '''
 yield message

 # TODO: bindings are *very* unpythonic here... iterator *or* None
 # is a nono
 replies = message.get_replies()
 if replies != None:
 for message in replies:
 # TODO: yield from
 for message in self.walk_replies(message):
 yield message

[docs] def walk_thread(self, thread):
 '''
 Returns all messages in the given thread.

 :param message: the tread you are interested in
 :type message: :class:`notmuch.Thread`
 :returns: an iterator over :class:`notmuch.Message` objects
 '''
 for message in thread.get_toplevel_messages():
 # TODO: yield from
 for message in self.walk_replies(message):
 yield message

[docs] def add_message(self, path, sync_maildir_flags=False, new_mail_handler=None):
 '''
 Adds the given message to the notmuch index.

 :param path: path to the message
 :type path: str
 :param sync_maildir_flags: if `True` notmuch converts the
 standard maildir flags to tags
 :type sync_maildir_flags: bool
 :param new_mail_handler: callback for new messages
 :type new_mail_handler: a function that is called with a
 :class:`notmuch.Message` object as
 its only argument
 :raises: :class:`notmuch.NotmuchError` if adding the message fails
 :returns: a :class:`notmuch.Message` object
 '''
 # TODO: it would be nice to update notmuchs directory index here
 message, status = self.open(rw=True).add_message(path, sync_maildir_flags=sync_maildir_flags)

 if status != notmuch.STATUS.DUPLICATE_MESSAGE_ID:
 logging.info('Found new mail in {}'.format(path))

 for tag in get_notmuch_new_tags():
 message.add_tag(tag)

 if new_mail_handler:
 new_mail_handler(message)

 return message

[docs] def remove_message(self, path):
 '''
 Remove the given message from the notmuch index.

 :param path: path to the message
 :type path: str
 '''
 self.open(rw=True).remove_message(path)

 © Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

_static/minus.png

_static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		afew 0.1pre documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

_static/file.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		afew 0.1pre documentation »

 All modules for which code is available

		afew.DBACL

		afew.Database

		afew.utils

 © Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

_modules/afew/utils.html

 Navigation

 		
 index

 		
 modules |

 		afew 0.1pre documentation »

 		Module code »

 Source code for afew.utils

coding=utf-8
from __future__ import print_function, absolute_import, unicode_literals

#
Copyright (c) Justus Winter <4winter@informatik.uni-hamburg.de>
#
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

import codecs
import re
import sys
import email
from datetime import datetime

signature_line_re = re.compile(r'^((--)|(__)|(==)|(**)|(##))')
[docs]def strip_signatures(lines, max_signature_size = 10):
 r'''
 Strip signatures from a mail. Used to filter mails before
 classifying mails.

 :param lines: a mail split at newlines
 :type lines: :class:`list` of :class:`str`
 :param max_signature_size: consider message parts up to this size as signatures
 :type max_signature_size: int
 :returns: the mail with signatures stripped off
 :rtype: :class:`list` of :class:`str`

 >>> strip_signatures([
 ... 'Huhu',
 ... '--',
 ... 'Ikke',
 ...])
 ['Huhu']
 >>> strip_signatures([
 ... 'Huhu',
 ... '--',
 ... 'Ikke',
 ... '**',
 ... "Sponsored by PowerDoh\'",
 ... "Sponsored by PowerDoh\'",
 ... "Sponsored by PowerDoh\'",
 ... "Sponsored by PowerDoh\'",
 ... "Sponsored by PowerDoh\'",
 ...], 5)
 ['Huhu']
 '''

 siglines = 0
 sigline_count = 0

 for n, line in enumerate(reversed(lines)):
 if signature_line_re.match(line):
 # set the last line to include
 siglines = n + 1

 # reset the line code
 sigline_count = 0

 if sigline_count >= max_signature_size:
 break

 sigline_count += 1

 return lines[:-siglines]

[docs]def extract_mail_body(message):
 r'''
 Extract the plain text body of the message with signatures
 stripped off.

 :param message: the message to extract the body from
 :type message: :class:`notmuch.Message`
 :returns: the extracted text body
 :rtype: :class:`list` of :class:`str`
 '''
 if hasattr(email, 'message_from_binary_file'):
 mail = email.message_from_binary_file(open(message.get_filename(), 'br'))
 else:
 if (3, 1) <= sys.version_info < (3, 2):
 fp = codecs.open(message.get_filename(), 'r', 'utf-8', errors='replace')
 else:
 fp = open(message.get_filename())
 mail = email.message_from_file(fp)

 content = []
 for part in mail.walk():
 if part.get_content_type() == 'text/plain':
 raw_payload = part.get_payload(decode=True)
 encoding = part.get_content_charset()
 if encoding:
 try:
 raw_payload = raw_payload.decode(encoding, 'replace')
 except LookupError:
 raw_payload = raw_payload.decode(sys.getdefaultencoding(), 'replace')
 else:
 raw_payload = raw_payload.decode(sys.getdefaultencoding(), 'replace')

 lines = raw_payload.split('\n')
 lines = strip_signatures(lines)

 content.append('\n'.join(lines))
 return '\n'.join(content)

[docs]def filter_compat(*args):
 r'''
 Compatibility wrapper for filter builtin.

 The semantic of the filter builtin has been changed in
 python3.x. This is a temporary workaround to support both python
 versions in one code base.
 '''
 return list(filter(*args))

def get_message_summary(message):
 when = datetime.fromtimestamp(float(message.get_date()))
 sender = get_sender(message)
 subject = message.get_header('Subject')
 return '[{date}] {sender} | {subject}'.format(date=when, sender=sender,
 subject=subject)

def get_sender(message):
 sender = message.get_header('From')
 name_match = re.search('(.+) <.+@.+\..+>', sender)
 if name_match:
 sender = name_match.group(1)
 return sender

 © Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/down.png

_modules/afew/DBACL.html

 Navigation

 		
 index

 		
 modules |

 		afew 0.1pre documentation »

 		Module code »

 Source code for afew.DBACL

coding=utf-8
from __future__ import print_function, absolute_import, unicode_literals

#
Copyright (c) Justus Winter <4winter@informatik.uni-hamburg.de>
#
Permission to use, copy, modify, and distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
#
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
#

import os
import glob
import logging
import functools
import subprocess

class ClassificationError(Exception): pass
class BackendError(ClassificationError): pass

default_db_path = os.path.join(os.environ.get('XDG_DATA_HOME',
 os.path.expanduser('~/.local/share')),
 'afew', 'categories')

[docs]class Classifier(object):
 reference_category = 'reference_category'

 def __init__(self, categories, database_directory = default_db_path):
 self.categories = set(categories)
 self.database_directory = database_directory

 def learn(self, category, texts):
 pass

 def classify(self, text):
 pass

[docs]class DBACL(Classifier):
 def __init__(self, database_directory = default_db_path):
 categories = glob.glob1(database_directory, '*')
 super(DBACL, self).__init__(categories, database_directory)

 sane_environ = {
 key: value
 for key, value in os.environ.items()
 if not (
 key.startswith('LC_') or
 key == 'LANG' or
 key == 'LANGUAGE'
)
 }

 def _call_dbacl(self, args, **kwargs):
 command_line = ['dbacl', '-T', 'email'] + args
 logging.debug('executing %r' % command_line)
 return subprocess.Popen(
 command_line,
 shell = False,
 stdin = subprocess.PIPE,
 stdout = subprocess.PIPE,
 stderr = subprocess.PIPE,
 env = self.sane_environ,
 **kwargs
)

 def get_category_path(self, category):
 return os.path.join(self.database_directory, category.replace('/', '_'))

 def learn(self, category, texts):
 process = self._call_dbacl(['-l', self.get_category_path(category)])

 for text in texts:
 process.stdin.write((text + '\n').encode('utf-8'))

 process.stdin.close()
 process.wait()

 if process.returncode != 0:
 raise BackendError('dbacl learning failed:\n%s' % process.stderr.read())

 def classify(self, text):
 if not self.categories:
 raise ClassificationError('No categories defined')

 categories = functools.reduce(list.__add__, [
 ['-c', self.get_category_path(category)]
 for category in self.categories
], [])

 process = self._call_dbacl(categories + ['-n'])
 stdout, stderr = process.communicate(text.encode('utf-8'))

 if len(stderr) == 0:
 result = stdout.split()
 scores = list()
 while result:
 category = result.pop(0).decode('utf-8', 'replace')
 score = float(result.pop(0))
 scores.append((category, score))
 scores.sort(key = lambda category_score: category_score[1])
 else:
 raise BackendError('dbacl classification failed:\n%s' % stderr)

 return scores

 © Copyright 2011, Justus Winter.
 Created using Sphinx 1.3.5.

