
afew Documentation
Release 0.1pre

Justus Winter

February 17, 2017

Contents

1 Quick Start 3
1.1 Install . 3
1.2 Initial Config . 3
1.3 Next Steps . 4

2 Installation 5
2.1 Requirements . 5
2.2 Unprivileged Install . 5

3 Command Line Usage 7
3.1 Initial tagging . 7
3.2 Move Mode . 7
3.3 Classify . 8
3.4 Commandline help . 8

4 Configuration 11
4.1 Configuration File . 11
4.2 NotMuch Config . 11
4.3 Filter Configuration . 11
4.4 Full Sample Config . 12
4.5 More Filter Examples . 13

5 Filters 15
5.1 SpamFilter . 15
5.2 ClassifyingFilter . 15
5.3 KillThreadsFilter . 15
5.4 ListMailsFilter . 16
5.5 SentMailsFilter . 16
5.6 ArchiveSentMailsFilter . 16
5.7 InboxFilter . 16
5.8 HeaderMatchingFilter . 16
5.9 FolderNameFilter . 17
5.10 Customizing filters . 18

6 Move Mode 19
6.1 Configuration Section . 19
6.2 Rules . 19
6.3 Max Age . 20
6.4 Limitations . 20

i

7 Classification 21
7.1 In Action . 21

8 Extending afew 23

9 Implementation 25
9.1 Database Manager . 25
9.2 Filter . 26
9.3 Mail classification . 26
9.4 Configuration management . 26
9.5 Miscellanious utility functions . 26

10 Indices and tables 29

Python Module Index 31

ii

afew Documentation, Release 0.1pre

afew is an initial tagging script for notmuch mail:

• http://notmuchmail.org/

• http://notmuchmail.org/initial_tagging/

Its basic task is to provide automatic tagging each time new mail is registered with notmuch. In a classic setup, you
might call it after notmuch new in an offlineimap post sync hook or in the notmuch post-new hook.

In addition to more elementary features such as adding tags based on email headers or maildir folders, handling killed
threads and spam, it can do some heavy magic in order to /learn/ how to initially tag your mails based on their content.

fyi: afew plays nicely with alot, a GUI for notmuch mail ;)

• https://github.com/pazz/alot

Contents:

Contents 1

http://notmuchmail.org/
http://notmuchmail.org/initial_tagging/
https://github.com/pazz/alot

afew Documentation, Release 0.1pre

2 Contents

CHAPTER 1

Quick Start

The steps to get up and running are:

• install the afew package

• create the config files

• add a notmuch post-new hook that calls afew

Install

The following commands will get you going on Debian/Ubuntu systems:

$ sudo aptitude install notmuch python-notmuch dbacl
$ git clone git://github.com/teythoon/afew.git
$ cd afew
$ python setup.py install --prefix

Ensure that ~/.local/bin is in your path. One way is to add the following to your ~/.bashrc:

if [-d ~/.local/bin]; then
PATH=$PATH:~/.local/bin

fi

See Installation for a more detailed guide.

Initial Config

Create the directories to hold the config files:

$ mkdir -p ~/.config/afew ~/.local/share/afew/categories

Make sure that ~/.notmuch-config reads:

[new]
tags=new

Put a list of filters into ~/.config/afew/config:

3

afew Documentation, Release 0.1pre

This is the default filter chain
[SpamFilter]
[ClassifyingFilter]
[KillThreadsFilter]
[ListMailsFilter]
[ArchiveSentMailsFilter]
[InboxFilter]

And create a post-new hook for notmuch.

$ mkdir -p path/to/maildir/.notmuch/hooks
$ touch path/to/maildir/.notmuch/hooks/post-new

Then edit the post-new file to contain:

#!/bin/sh
$HOME/.local/bin/afew --tag --new

Next Steps

You can:

• add extra Filters for more custom filtering

• make use of the Move Mode to move your email between folders

• start using afew’s automatic Classification system

• run afew against all your old mail by running afew –tag –all

• start Extending afew afew

4 Chapter 1. Quick Start

CHAPTER 2

Installation

Requirements

afew works with python 2.7, 3.1 and 3.2

As well as notmuch and it’s python bindings, you’ll need dbacl for the text classification. On Debian/Ubuntu systems
you can install these by doing:

$ sudo aptitude install notmuch python-notmuch dbacl python-dev python-setuptools

Unprivileged Install

And I’d like to suggest to install afew as your unprivileged user.

$ python setup.py install --prefix=~/.local
$ mkdir -p ~/.config/afew ~/.local/share/afew/categories

If you do, make sure ~/.local/bin is in your path, say by putting the following in your ~/.bashrc:

if [-d ~/.local/bin]; then
PATH=$PATH:~/.local/bin

fi

If you want to do a system wide install you can leave off the –prefix option.

5

afew Documentation, Release 0.1pre

6 Chapter 2. Installation

CHAPTER 3

Command Line Usage

Ultimately afew is a command line tool. You have to specify an action, and whether to act on all messages, or only on
new messages. The actions you can choose from are:

tag run the tag filters. See Initial tagging.

watch continuously monitor the mailbox for new files

move-mails move mail files between maildir folders

learn=LEARN train the category with the messages matching the given query

update update the categories [requires no query]

update-reference update the reference category (takes quite some time) [requires no query]

classify classify each message matching the given query (to test the trained categories)

Initial tagging

Basic tagging stuff requires no configuration, just run

$ afew --tag --new
or to tag *all* messages
$ afew --tag --all

To do this automatically you can add the following hook into your ~/.offlineimaprc:

postsynchook = ionice -c 3 chrt --idle 0 /bin/sh -c "notmuch new && afew --tag --new"

There is a lot more to say about general filter Configuration and the different Filters provided by afew.

Simulation

Adding –dry-run to any –tag or –sync-tags action prevents modification of the notmuch db. Add some -vv goodness
to see some action.

Move Mode

To invoke afew in move mode, provide the –move-mails option on the command line. Move mode will respect –dry-
run, so throw in –verbose and watch what effects a real run would have.

7

afew Documentation, Release 0.1pre

In move mode, afew will check all mails (or only recent ones) in the configured maildir folders, deciding whether they
should be moved to another folder.

The decision is based on rules defined in your config file. A rule is bound to a source folder and specifies a target
folder into which a mail will be moved that is matched by an associated query.

This way you will be able to transfer your sorting principles roughly to the classic folder based maildir structure
understood by your traditional mail server. Tag your mails with notmuch, call afew –move-mails in an offlineimap
presynchook and enjoy a clean inbox in your webinterface/GUI-client at work.

For information on how to configure rules for move mode, what you can do with it and what you can’t, please refer to
Move Mode.

Classify

The –learn, –update, –update-references and –classify actions all relate to learning how to filter your email. See the
Classification page for details.

Commandline help

The full set of options is:

$ afew --help
Usage: afew [options] [--] [query]

Options:
-h, --help show this help message and exit

Actions:
Please specify exactly one action (both update actions can be
specified simultaniously).

-t, --tag run the tag filters
-w, --watch continuously monitor the mailbox for new files
-l LEARN, --learn=LEARN

train the category with the messages matching the
given query

-u, --update update the categories [requires no query]
-U, --update-reference

update the reference category (takes quite some time)
[requires no query]

-c, --classify classify each message matching the given query (to
test the trained categories)

-m, --move-mails move mail files between maildir folders

Query modifiers:
Please specify either --all or --new or a query string. The default
query for the update actions is a random selection of
REFERENCE_SET_SIZE mails from the last REFERENCE_SET_TIMEFRAME days.

-a, --all operate on all messages
-n, --new operate on all new messages

General options:
-C NOTMUCH_CONFIG, --notmuch-config=NOTMUCH_CONFIG

8 Chapter 3. Command Line Usage

afew Documentation, Release 0.1pre

path to the notmuch configuration file [default:
$NOTMUCH_CONFIG or ~/.notmuch-config]

-e ENABLE_FILTERS, --enable-filters=ENABLE_FILTERS
filter classes to use, separated by ',' [default:
filters specified in afew's config]

-d, --dry-run don't change the db [default: False]
-R REFERENCE_SET_SIZE, --reference-set-size=REFERENCE_SET_SIZE

size of the reference set [default: 1000]
-T DAYS, --reference-set-timeframe=DAYS

do not use mails older than DAYS days [default: 30]
-v, --verbose be more verbose, can be given multiple times

3.4. Commandline help 9

afew Documentation, Release 0.1pre

10 Chapter 3. Command Line Usage

CHAPTER 4

Configuration

Configuration File

Customization of tag filters takes place in afew’s config file in ~/.config/afew/config.

NotMuch Config

afew tries to adapt to the new tag that notmuch sets on new email, but has mostly been developed and used against the
new tag. To use that, make sure that ~/.notmuch-config contains:

[new]
tags=new

Filter Configuration

You can modify filters, and define your own versions of the base Filter that allow you to tag messages in a similar way
to the notmuch tag command, using the config file. The default config file is:

[SpamFilter]
[ClassifyingFilter]
[KillThreadsFilter]
[ListMailsFilter]
[ArchiveSentMailsFilter]
[InboxFilter]

See the Filters page for the details of those filters and the custom arguments they accept.

You can add filters based on the base filter as well. These can be customised by specifying settings beneath them. The
standard settings, which apply to all filters, are:

message text that will be displayed while running this filter if the verbosity is high enough.

query the query to use against the messages, specified in standard notmuch format. Note that you don’t need to
specify the new tag - afew will add that when run with the –new flag.

tags the tags to add or remove for messages that match the query. Tags to add are preceded by a + and tags to remove
are preceded by a -. Multiple tags are separated by semicolons.

tags_blacklist if the message has one of these tags, don’t add tags to it. Tags are separated by semicolons.

11

afew Documentation, Release 0.1pre

So to add the deer tag to any message to or from antelope@deer.com you could do:

[Filter.1]
query = 'antelope@deer.com'
tags = +deer
message = Wild animals ahoy

You can also (in combination with the InboxFilter) have email skip the Inbox by removing the new tag before you get
to the InboxFilter:

[Filter.2]
query = from'pointyheaded@boss.com'
tags = -new;+boss
message = Message from above

Full Sample Config

Showing some sample configs is the easiest way to understand. The notmuch initial tagging page shows a sample
config:

immediately archive all messages from "me"
notmuch tag -new -- tag:new and from:me@example.com

delete all messages from a spammer:
notmuch tag +deleted -- tag:new and from:spam@spam.com

tag all message from notmuch mailing list
notmuch tag +notmuch -- tag:new and to:notmuch@notmuchmail.org

finally, retag all "new" messages "inbox" and "unread"
notmuch tag +inbox +unread -new -- tag:new

The (roughly) equivalent set up in afew would be:

[ArchiveSentMailsFilter]

[Filter.spamcom]
message = Delete all messages from spammer
query = from:spam@spam.com
tags = +deleted;-new

[Filter.notmuch]
message = Tag all messages from the notmuch mailing list
query = to:notmuch@notmuchmail.org
tags = +notmuch

[InboxFilter]

Not that the queries do not generally include tag:new because this is implied when afew is run with the –new flag.

The differences between them is that

• the ArchiveSentMailsFilter will add the sent tag, as well as archiving the email. And it will not archive email
that has been sent to one of your own addresses.

• the InboxFilter does not add the unread tag. But most mail clients will manage the unread status directly in
maildir.

12 Chapter 4. Configuration

http://notmuchmail.org/initial_tagging/

afew Documentation, Release 0.1pre

More Filter Examples

Here are a few more example filters from github dotfiles:

[Filter.1]
query = 'sicsa-students@sicsa.ac.uk'
tags = +sicsa
message = sicsa

[Filter.2]
query = 'from:foosoc.ed@gmail.com OR from:GT Silber OR from:lizzie.brough@eusa.ed.ac.uk'
tags = +soc;+foo
message = foosoc

[Filter.3]
query = 'folder:gmail/G+'
tags = +G+
message = gmail spam

skip inbox
[Filter.6]
query = 'to:notmuch@notmuchmail.org AND (subject:emacs OR subject:elisp OR "(defun" OR "(setq" OR PATCH)'
tags = -new
message = notmuch emacs stuff

4.5. More Filter Examples 13

afew Documentation, Release 0.1pre

14 Chapter 4. Configuration

CHAPTER 5

Filters

The default filter set (if you don’t specify anything in the config) is:

[SpamFilter]
[ClassifyingFilter]
[KillThreadsFilter]
[ListMailsFilter]
[ArchiveSentMailsFilter]
[InboxFilter]

The standard filter Configuration can be applied to these filters as well. Though note that most of the filters below set
their own value for message, query and/or tags, and some ignore some of the standard settings.

SpamFilter

The settings you can use are:

• spam_tag = <tag>

• Add <tag> to all mails recognized as spam.

• The default is ‘spam’.

• You may use it to tag your spam as ‘junk’, ‘scum’ or whatever suits your mood. Note that only a single tag is
supported here.

Email will be considered spam if the header X-Spam-Flag is present.

ClassifyingFilter

This filter will tag messages based on what it has learnt from seeing how you’ve tagged messages in the past. See
Classification for more details.

KillThreadsFilter

If the new message has been added to a thread that has already been tagged killed then add the killed tag to this
message. This allows for ignoring all replies to a particular thread.

15

afew Documentation, Release 0.1pre

ListMailsFilter

This filter looks for the List-Id header, and if it finds it, adds a tag lists and a tag named lists/<list-id>.

SentMailsFilter

The settings you can use are:

• sent_tag = <tag>

• Add <tag> to all mails sent from one of your configured mail addresses.

• The default is to add no tag, so you need to specify something.

• You may e.g. use it to tag all mails sent by you as ‘sent’. This may make special sense in conjunction with a
mail client that is able to not only search for threads but individual mails as well.

More accurately, it looks for emails that are from one of your addresses and not to any of your addresses.

• to_transforms = <transformation rules>

• Transform To/Cc/Bcc e-mail addresses to tags according to the specified rules. <transformation rules> is a space
separated list consisting of ‘user_part@domain_part:tags’ style pairs. The colon separates the e-mail address to
be transformed from tags it is to be transformed into. ‘:tags’ is optional and if empty, ‘user_part’ is used as tag.
‘tags’ can be a single tag or semi-colon separated list of tags.

• It can be used for example to easily tag posts sent to mailing lists which at this stage don’t have List-Id field.

ArchiveSentMailsFilter

It extends SentMailsFilter with the following feature:

• Emails filtered by this filter have the new tag removed, so will not have the inbox tag added by the InboxFilter.

InboxFilter

This removes the new tag, and adds the inbox tag, to any message that isn’t killed or spam. (The new tags are set in
your notmuch config, and default to just new.)

HeaderMatchingFilter

This filter adds tags to a message if the named header matches the regular expression given. The tags can be set, or
based on the match. The settings you can use are:

• header = <header_name>

• pattern = <regex_pattern>

• tags = <tag_list>

If you surround a tag with {} then it will be replaced with the named match.

Some examples are:

16 Chapter 5. Filters

mailto:'user_part@domain_part

afew Documentation, Release 0.1pre

[HeaderMatchingFilter.1]
header = X-Spam-Flag
pattern = YES
tags = +spam

[HeaderMatchingFilter.2]
header = List-Id
pattern = <(?P<list_id>.*)>
tags = +lists;+{list_id}

[HeaderMatchingFilter.3]
header = X-Redmine-Project
pattern = (?P<project>.*)
tags = +redmine;+{project}

SpamFilter and ListMailsFilter are implemented using HeaderMatchingFilter, and are only slightly more complicated
than the above examples.

FolderNameFilter

This looks at which folder each email is in and uses that name as a tag for the email. So if you have a procmail or
sieve set up that puts emails in folders for you, this might be useful.

• folder_explicit_list = <folder list>

• Tag mails with tag in <folder list> only. <folder list> is a space separated list, not enclosed in quotes or any
other way.

• Empty list means all folders (of course blacklist still applies).

• The default is empty list.

• You may use it e.g. to set tags only for specific folders like ‘Sent’.

• folder_blacklist = <folder list>

• Never tag mails with tag in <folder list>. <folder list> is a space separated list, not enclosed in quotes or any
other way.

• The default is to blacklist no folders.

• You may use it e.g. to avoid mails being tagged as ‘INBOX’ when there is the more standard ‘inbox’ tag.

• folder_transforms = <transformation rules>

• Transform folder names according to the specified rules before tagging mails. <transformation rules> is a space
separated list consisting of ‘folder:tag’ style pairs. The colon separates the name of the folder to be transformed
from the tag it is to be transformed into.

• The default is to transform to folder names.

• You may use the rules e.g. to transform the name of your ‘Junk’ folder into your ‘spam’ tag or fix capitalization
of your draft and sent folder:

folder transforms = Junk:spam Drafts:draft Sent:sent

• maildir_separator = <sep>

• Use <sep> to split your maildir hierarchy into individual tags.

• The default is to split on ‘.’

5.9. FolderNameFilter 17

afew Documentation, Release 0.1pre

• If your maildir hierarchy is represented in the filesystem as collapsed dirs, <sep> is used to split it again before
applying tags. If your maildir looks like this:

[...]
/path/to/maildir/devel.afew/[cur|new|tmp]/...
/path/to/maildir/devel.alot/[cur|new|tmp]/...
/path/to/maildir/devel.notmuch/[cur|new|tmp]/...
[...]

the mails in your afew folder will be tagged with ‘devel’ and ‘afew’.

If instead your hierarchy is split by a more conventional ‘/’ or any other divider

[...]
/path/to/maildir/devel/afew/[cur|new|tmp]/...
/path/to/maildir/devel/alot/[cur|new|tmp]/...
/path/to/maildir/devel/notmuch/[cur|new|tmp]/...
[...]

you need to configure that divider to have your mails properly tagged:

maildir_separator = /

Customizing filters

To customize these filters, there are basically two different possibilities:

Let’s say you like the SpamFilter, but it is way too polite

1. Create an filter object and customize it

[SpamFilter.0] # note the index
message = meh

The index is required if you want to create a new SpamFilter in addition to the default one. If you need just one
customized SpamFilter, you can drop the index and customize the default instance.

2. Create a new type...

[ShitFilter(SpamFilter)]
message = I hatez teh spam!

and create an object or two

[ShitFilter.0]
[ShitFilter.1]
message = Me hatez it too.

You can provide your own filter implementations too. You have to register your filters via entry points. See the afew
setup.py for examples on how to register your filters. To add your filters, you just need to install your package in the
context of the afew application.

18 Chapter 5. Filters

CHAPTER 6

Move Mode

Configuration Section

Here is a full sample configuration for move mode:

[MailMover]
folders = INBOX Junk
max_age = 15

rules
INBOX = 'tag:spam':Junk 'NOT tag:inbox':Archive
Junk = 'NOT tag:spam AND tag:inbox':INBOX 'NOT tag:spam':Archive

Below we explain what each bit of this means.

Rules

First you need to specify which folders should be checked for mails that are to be moved (as a whitespace separated
list):

folders = INBOX Junk

Then you have to specify rules that define move actions of the form

<src> = ['<qry>':<dst>]+

Every mail in the <src> folder that matches a <qry> will be moved into the <dst> folder associated with that query.
A message that matches multiple queries will be copied to multiple destinations.

You can bind as many rules to a maildir folder as you deem necessary. Just add them as elements of a (whitespace
separated) list.

Please note, though, that you need to specify at least one rule for every folder given by the folders option and at least
one folder to check in order to use the move mode.

INBOX = 'tag:spam':Junk

will bind one rule to the maildir folder INBOX that states that all mails in said folder that carry (potentially among
others) the tag spam are to be moved into the folder Junk.

With <qry> being an arbitrary notmuch query, you have the power to construct arbitrarily flexible rules. You can
check for the absence of tags and look out for combinations of attributes:

19

afew Documentation, Release 0.1pre

Junk = 'NOT tag:spam AND tag:inbox':INBOX 'NOT tag:spam':Archive

The above rules will move all mails in Junk that don’t have the spam tag but do have an inbox tag into the directory
INBOX. All other mails not tagged with spam will be moved into Archive.

Max Age

You can limit the age of mails you want to move by setting the max_age option in the configuration section. By
providing

max_age = 15

afew will only check mails at most 15 days old.

Limitations

(1) Rules don’t manipulate tags.

INBOX = 'NOT tag:inbox':Archive
Junk = 'NOT tag:spam':INBOX

The above combination of rules might prove tricky, since you might expect de-spammed mails to end up in INBOX.
But since the Junk rule will not add an inbox tag, the next run in move mode might very well move the matching mails
into Archive.

Then again, if you remove the spam tag and do not set an inbox tag, how would you come to expect the mail would
end up in your INBOX folder after moving it? ;)

(2) There is no 1:1 mapping between folders and tags. And that’s a feature. If you tag a mail with two tags and there
is a rule for each of them, both rules will apply. Your mail will be copied into two destination folders, then removed
from its original location.

20 Chapter 6. Move Mode

CHAPTER 7

Classification

In Action

Let’s train on an existing tag spam:

$ afew --learn spam -- tag:spam

Let’s build the reference category. This is important to reduce the false positive rate. This may take a while...

$ afew --update-reference

And now let’s create a new tag from an arbitrary query result:

$ afew -vv --learn sourceforge -- sourceforge

Let’s see how good the classification is:

$ afew --classify -- tag:inbox and not tag:killed
Sergio López <slpml@sinrega.org> (2011-10-08) (bug-hurd inbox lists unread) --> no match
Patrick Totzke <reply+i-1840934-9a702d09342dca2b120126b26b008d0deea1731e@reply.github.com> (2011-10-08) (alot inbox lists) --> alot
[...]

As soon as you trained some categories, afew will automatically tag your new mails using the classifier. If you want
to disable this feature, either use the –enable-filters option to override the default set of filters or remove the files in
your afew state dir:

$ ls ~/.local/share/afew/categories
alot juggling reference_category sourceforge spam

You need to update the category files periodically. I’d suggest to run

$ afew --update

on a weekly and

$ afew --update-reference

on a monthly basis.

21

afew Documentation, Release 0.1pre

22 Chapter 7. Classification

CHAPTER 8

Extending afew

You can put python files in ~/.config/afew/ and they will be imported by afew. If you use that python file to define a
Filter class and use the register_filter decorator then you can refer to it in your filter configuration.

So an example small filter you could add might be:

from afew.Filter import Filter, register_filter

PROJECT_MAPPING = {
'fabric': 'deployment',
'oldname': 'new-name',

}

@register_filter
class RedmineFilter(Filter):

message = 'Create tag based on redmine project'
query = 'NOT tag:redmine'

def handle_message(self, message):
project = message.get_header('X-Redmine-Project')
if project in PROJECT_MAPPING:

project = PROJECT_MAPPING[project]
self.add_tags(message, 'redmine', project)

We have defined the message and query class variables that are used by the parent class Filter. The message is printed
when running with verbose flags. The query is used to select messages to run against - here we ensure we don’t bother
looking at messages we’ve already looked at.

The handle_message() method is the key one to implement. This will be called for each message that matches the
query. The argument is a notmuch message object and the key methods used by the afew filters are get_header(),
get_filename() and get_thread().

Of the methods inherited from the Filter class the key ones are add_tags() and remove_tags(), but read about the
Implementation or just read the source code to get your own ideas.

Once you’ve defined your filter, you can add it to your config like any other filter:

[RedmineFilter]

23

http://pythonhosted.org/notmuch/#message-a-single-message

afew Documentation, Release 0.1pre

24 Chapter 8. Extending afew

CHAPTER 9

Implementation

Database Manager

The design of the database manager was inspired by alots database manager alot.db.DBManager.

class afew.Database.Database
Convenience wrapper around notmuch.

add_message(path, sync_maildir_flags=False, new_mail_handler=None)
Adds the given message to the notmuch index.

Parameters

• path (str) – path to the message

• sync_maildir_flags (bool) – if True notmuch converts the standard maildir flags
to tags

• new_mail_handler (a function that is called with a notmuch.Message object as
its only argument) – callback for new messages

Raises notmuch.NotmuchError if adding the message fails

Returns a notmuch.Message object

close()
Closes the notmuch database if it has been opened.

do_query(query)
Executes a notmuch query.

Parameters query (str) – the query to execute

Returns the query result

Return type notmuch.Query

get_messages(query, full_thread=False)
Get all messages mathing the given query.

Parameters

• query (str) – the query to execute using Database.do_query()

• full_thread (bool) – return all messages from mathing threads

Returns an iterator over notmuch.Message objects

25

http://docs.python.org/3.2/library/functions.html#str
http://docs.python.org/3.2/library/functions.html#bool
http://docs.python.org/3.2/library/functions.html#str
http://docs.python.org/3.2/library/functions.html#str
http://docs.python.org/3.2/library/functions.html#bool

afew Documentation, Release 0.1pre

mail_bodies_matching(*args, **kwargs)
Filters each message yielded from Database.get_messages() through
afew.utils.extract_mail_body().

This functions accepts the same arguments as Database.get_messages().

Returns an iterator over list of str

remove_message(path)
Remove the given message from the notmuch index.

Parameters path (str) – path to the message

walk_replies(message)
Returns all replies to the given message.

Parameters message (notmuch.Message) – the message to start from

Returns an iterator over notmuch.Message objects

walk_thread(thread)
Returns all messages in the given thread.

Parameters message (notmuch.Thread) – the tread you are interested in

Returns an iterator over notmuch.Message objects

Filter

Mail classification

class afew.DBACL.Classifier(categories, database_directory=u’/home/docs/.local/share/afew/categories’)

class afew.DBACL.DBACL(database_directory=u’/home/docs/.local/share/afew/categories’)

Configuration management

Miscellanious utility functions

afew.utils.extract_mail_body(message)
Extract the plain text body of the message with signatures stripped off.

Parameters message (notmuch.Message) – the message to extract the body from

Returns the extracted text body

Return type list of str

afew.utils.filter_compat(*args)
Compatibility wrapper for filter builtin.

The semantic of the filter builtin has been changed in python3.x. This is a temporary workaround to support
both python versions in one code base.

afew.utils.strip_signatures(lines, max_signature_size=10)
Strip signatures from a mail. Used to filter mails before classifying mails.

Parameters

26 Chapter 9. Implementation

http://docs.python.org/3.2/library/functions.html#str

afew Documentation, Release 0.1pre

• lines (list of str) – a mail split at newlines

• max_signature_size (int) – consider message parts up to this size as signatures

Returns the mail with signatures stripped off

Return type list of str

>>> strip_signatures([
... 'Huhu',
... '--',
... 'Ikke',
...])
['Huhu']
>>> strip_signatures([
... 'Huhu',
... '--',
... 'Ikke',
... '**',
... "Sponsored by PowerDoh\'",
... "Sponsored by PowerDoh\'",
... "Sponsored by PowerDoh\'",
... "Sponsored by PowerDoh\'",
... "Sponsored by PowerDoh\'",
...], 5)
['Huhu']

9.5. Miscellanious utility functions 27

http://docs.python.org/3.2/library/functions.html#int

afew Documentation, Release 0.1pre

28 Chapter 9. Implementation

CHAPTER 10

Indices and tables

• genindex

• modindex

• search

29

afew Documentation, Release 0.1pre

30 Chapter 10. Indices and tables

Python Module Index

a
afew.Database, 25
afew.DBACL, 26
afew.Filter, 26
afew.NotmuchSettings, 26
afew.Settings, 26
afew.utils, 26

31

afew Documentation, Release 0.1pre

32 Python Module Index

Index

A
add_message() (afew.Database.Database method), 25
afew.Database (module), 25
afew.DBACL (module), 26
afew.Filter (module), 26
afew.NotmuchSettings (module), 26
afew.Settings (module), 26
afew.utils (module), 26

C
Classifier (class in afew.DBACL), 26
close() (afew.Database.Database method), 25

D
Database (class in afew.Database), 25
DBACL (class in afew.DBACL), 26
do_query() (afew.Database.Database method), 25

E
extract_mail_body() (in module afew.utils), 26

F
filter_compat() (in module afew.utils), 26

G
get_messages() (afew.Database.Database method), 25

M
mail_bodies_matching() (afew.Database.Database

method), 25

R
remove_message() (afew.Database.Database method), 26

S
strip_signatures() (in module afew.utils), 26

W
walk_replies() (afew.Database.Database method), 26
walk_thread() (afew.Database.Database method), 26

33

	Quick Start
	Install
	Initial Config
	Next Steps

	Installation
	Requirements
	Unprivileged Install

	Command Line Usage
	Initial tagging
	Move Mode
	Classify
	Commandline help

	Configuration
	Configuration File
	NotMuch Config
	Filter Configuration
	Full Sample Config
	More Filter Examples

	Filters
	SpamFilter
	ClassifyingFilter
	KillThreadsFilter
	ListMailsFilter
	SentMailsFilter
	ArchiveSentMailsFilter
	InboxFilter
	HeaderMatchingFilter
	FolderNameFilter
	Customizing filters

	Move Mode
	Configuration Section
	Rules
	Max Age
	Limitations

	Classification
	In Action

	Extending afew
	Implementation
	Database Manager
	Filter
	Mail classification
	Configuration management
	Miscellanious utility functions

	Indices and tables
	Python Module Index

